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Abstract Factorization formulas are used to derive a uniform semiclassical approx-
imation of transition probabilities. The latter are determined in the analytical form
where the basis transition probabilities are set by the analytical formula. As an exam-
ple, we consider the rigid rotor, harmonic oscillator, and Morse oscillator in collisions
with structureless particles.

Keywords Transition probabilities · Factorization formulas · Uniform semiclassical
approximation

1 Introduction

Every so often, the scattering problem of a pair of molecules is well described by the
collision between the probed molecule and a structureless particle that is treated as a
spectator only. Despite the availability of large-scale computers, quantum close-cou-
pled calculations remain feasible only for not-too-high quantum numbers due to the
rapidly expanding size of the matrices involved. Collisional energy transfer near the
dissociation threshold holds the greatest interest today. For these reasons, the develop-
ment of simple models in vibrational-rotational relaxation is still the issue of the day.
Therefore, the connecting formulas are a useful tool for studying the vibrational-rota-
tional relaxation [1–6]. The connecting formulas establish analytical relations between
the elements of matrices of cross-sections, rate constants, and transition probabilities
by decreasing the number of “basis” elements to be determined either experimentally
or by numerical calculations. Particularly, in the case of factorization, the cross-section
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of an arbitrary inelastic transition σ j→ j ′ from the j to the j ′state can be given as the
sum of the cross-sections of the “basis” transitions σ j→0 with fairly complex coeffi-
cients [3–6]. The rate constants K j→ j ′ are obtained by averaging cross-sections over
the translational energy distribution function. An effective method has been recently
proposed to find transition probabilities per collision from the set of transition rates per
unit time [7,8]. Therefore, the transition probabilities are assumed to be known with
the available either experimental or calculated rate constants. Physically, factorization
arises from the non-adiabatic nature of rotational relaxation, i.e., holds approximately
for sudden collisions [5]. For a harmonic oscillator under the action of external force,
this property is satisfied strictly at any value of adiabaticity parameter [6]. However,
for the anharmonic Morse oscillator, excited by an external force, the factorization
occurs already approximately [6].

Rotational factorization makes it possible to use the measured pressure broadening
linewidths to restore the rate constants K j→0 for expressing other K j→ j ′ in terms of
the connecting formulas [2–5]. Further studies indicate that a direct recovery of K j→0
is not universally possible, because the number of unknown quantities often exceeds
measurement capability. In this case, the K j→0 probabilities are usually specified
from physical considerations in the form of the functional dependence on j with few
adjustable parameters [2,9,10].

Thus, we get the Pj→0 = P0( j) transition probability as a function of the variable
j given in the analytical form. It is of interest to present the Pj→ j ′ matrix as a function
of two variables, P( j, j ′), also in the analytical form. By definition, j and j ′ are the
discrete variables. A semiclassical approximation, valid for large quantum numbers,
allows them to be considered as continuous variables. In the present work, the fac-
torization formulas are used to determine the P( j, j ′) dependence on j/j ′ from the
known P( j, 0)function, denoted further as P0( j). Below we are going to discuss the
cases of linear rigid rotor, harmonic oscillator, and Morse oscillator in collisions with
structureless particles.

2 The linear rigid rotor

In the semiclassical approximation, excitation of the rigid rotor upon collisions with
atoms is described quantum mechanically, whereas their translational motion is pre-
sented classically [5,11]. The semiclassical approximation holds well for the quantum
numbers of rotational angular momentum before ( j) and after ( j ′) collisions satisfy-
ing the inequality | j − j ′|/( j + j ′) � 1. Collisions are called sudden when the ratio
between the collision time and the molecule rotation period is very small. According
to [3–5], the probability of rotational j → j ′transition due to collisions is related to
the basis probabilities Pj→0 via the equation

Pj→ j ′ = (
2 j ′ + 1

) j+ j ′∑

j ′′=| j− j ′|

(
2 j ′′ + 1

) (
j j ′ j ′′
0 0 0

)2

Pj ′′→0, (1)
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where the expression in parenthesis is the Wigner 3 j-symbol [12,13]. It is worth not-
ing that the Pj→0 probabilities depend on both the quantum number j and the energy
of the j-th level (transferred energy), E j = Be j ( j + 1), where Be is the rotational
constant. In sudden collisions, the dependence on j will be weak. Therefore, the tran-
sition probability depends mainly on the transferred energy, namely Pj→0 = P0(E j ).
Let us write this equality in a power series

P0(ε) =
∞∑

k=0

akε
k, (2)

where ε = j ( j +1) is the reduced energy E j/Be. Using Eq. (2) enables one to rewrite
Eq. (1) as

P( j, j ′) = (
2 j ′ + 1)

) ∞∑

k=0

ak Mk( j, j ′), (3)

where the moments are defined by the expression

Mk( j, j ′) =
j+ j ′∑

j ′′=| j− j ′|
(2 j ′′ + 1)

(
j j ′ j ′′
0 0 0

)2 [
j ′′( j ′′ + 1)

]k (4)

Now we can derive a semiclassical representation of the P( j, j ′)function by study-
ing the asymptotic behavior of the moments at large quantum numbers. Note that for
the discrete j, j ′ variables, the P0( j) and P( j, j ′) functions are the basis vector and
the transition probability matrix, respectively.

Several first moments were determined in [14] as

M0 = 1, M1 = ε + ε′, (5)

M2 = ε2 + ε′2 + 4εε′, (6)

M3 = ε3 + ε′3 + 9
(
ε2ε′ + εε′2) − 4εε′, (7)

M4 = ε4 + ε′4 + 16
(
ε3ε′ + εε′3) + 36ε2ε′2 − 20

(
ε2ε′ + εε′2) + 16εε′ (8)

For brevity, Mkdenotes Mk( j, j ′). Further, at large j, j ′ the main contribution to Mk

is made by the terms of the εmε′m′
form with m + m′ = k. Their total contribution to

Mk is of the form [14]

Mk( j, j ′) ≈ 1

π

π∫

0

(
ε + ε′ − 2

√
εε′ cos α

)k
dα (9)

This approximate equality is exact at k = 0, 1, 2. For other k it is valid asymptotically.
With j = 0 (or j ′ = 0) Eq. (9) turns into identity.
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The integral formula for moments, derived within the limit of large quantum num-
bers, allows a simple geometric interpretation. The square of 3 j-symbol is proportional
to the probability that the addition of the angular momenta j′ and j′′ gives the angular
momentum j. The angle between the j and j′ vectors is of the form

cos α = ( j + 1/2)2 + ( j ′ + 1/2)2 − ( j ′′ + 1/2)2

2( j + 1/2)( j ′ + 1/2)
≈ ε + ε′ − ε′′

2
√

εε′ (10)

The semiclassical expression for the square of 3 j-symbol [13] can be written as

(
j j ′ j ′′
0 0 0

)2

≈ 1

2π( j + 1/2)( j ′ + 1/2) sin α
, (11)

where 0 < α < π . Taking account of these equations, it is readily shown that

(
j j ′ j ′′
0 0 0

)2

(2 j ′′ + 1)d j ′′ ≈ dα

π
(12)

This equation sheds light on the problem demonstrating how semiclassical expression
(9) follows from quantum sum (4).

Assume that Pj→0 = P0(ε) is the required function, which is expanded into a con-
vergent power series. Then, taking into account Eqs. (1)–(3), for the P( j, j ′) function
we obtain the approximate relation

P( j, j ′) = 2 j ′ + 1

π

π∫

0

P0

(
ε + ε′ − 2

√
εε′ cos α

)
dα (13)

Let us discuss this expression. For small j, j ′, the behavior of the P( j, j ′) function is
defined by the first expansion coefficients in (3), where the moments with k = 0, 1, 2
are precisely provided by Eq. (9). For the large quantum numbers, Eq. (13) is asymptot-
ically valid. Numerical calculations indicate that a minimal error is recorded for inelas-
tic rotational transitions with the quantum numbers such that | j − j ′|/( j + j ′) � 1.
As mentioned above, this inequality is the necessary condition for the semiclassical
approach to be valid and the approximation of sudden collisions is a sufficient condi-
tion for the applicability of input Eq. (1). Thus, Eq. (13) gives the uniform semiclassical
approximation of transition probabilities.

Now we would like to indicate a very interesting property of factorization formulas.
Formally, Eq. (9) may be rewritten as

Mk( j, j ′) ≈ 1

π

π∫

0

(
M1 −

√
2

(
M2 − M2

1

)
cos α

)k

dα (14)

We see that all the moments, beginning with k ≥ 3, are expressed asymptotically in
terms of the first moments. Surely, Eqs. (9) and (14) are equivalent, but, as shown
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below, the latter is of general character with the transition probabilities given in the
factorized form.

Finally, let us consider an interesting and practically important case where the tran-
sition probability Pj→0 decreases exponentially with the amount of energy transferred
in the collision

Pj→0 = N exp [−aj ( j + 1)] , (15)

where N is the normalization constant, and a is the parameter, characterizing the
energy transfer efficiency. Using Eq. (13) one obtains

P( j, j ′) = a(2 j ′ + 1) exp
[−a(ε + ε′)

]
I0

(
2a

√
εε′

)
, (16)

where I0 is the modified Bessel function. The P( j, j ′) function is normalized to unity
with the summation over j ′ substituted by the integration for d j ′. Figure 1 compares
the results obtained. The value a = 0.02 roughly corresponds to nitrogen at room tem-
perature [15]. As follows, the uniform semiclassical approximation provides wholly
satisfactory agreement for any � j = j ′ − j . As the temperature decreases, the param-
eter aincreases, and the accuracy of Eq. (16) decreases. To illustrate, this equation
is accurate to 5%, if the parameter a is less than 0.53 for one-quantum transitions,
and 0.26 for two-quantum transitions. On the other hand, at low temperatures, the
semiclassical approximation fails and the rotational factorization (1) is not valid even
approximately.
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Fig. 1 The probability of rotational transitions Pj→ j+�j as a function of � j from the uniform semiclas-
sical approximation (Eq. (16)) compared to the exact values from Eq. (1). The initial rotational level is
j = 10
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3 The forced harmonic oscillator

The model of harmonic oscillator is commonly applied in the case of small molecular
vibrations. There is the exact solution to the problem where the vibrations of diatomic
molecules are excited by collisions with atoms, considered as the sources of external
force. Korsch et al. [6] have derived the factorization formula for the transition proba-
bility of the linearly forced harmonic oscillator. The probability of transition between
the states n and n′ is of the form

Pn→n′ =
n+n′∑

n′′=|n−n′|
Cnn′n′′ Pn′′→0, (17)

where the expansion coefficients are found from the equation

Cnn′n′′ = (−1)s
∑

k

(
n
k − n′

) (
n′
k − n′′

) (
n′′
k − n

)
, (18)

and s = n + n′ + n′′. The properties of these coefficients are given in detail in [6].
Once again, we calculate the moments

Mk(n, n′) =
n+n′∑

n′′=|n−n′|
Cnn′n′′n′′k (19)

The first and zero moments were calculated in [6]

M0 = 1, M1 = n + n′ (20)

The following moments are calculated on the basis of general considerations. First,
Mk(n, n′) is the polynomial, symmetric about the n and n′ variables, the power is no
higher than k. Second, the property C0n′n′′ = δn′n′′ gives both the equality Mk(0, n′) =
n′k and that with analogous n variable. Third, we get Mk(0, 0) = 0. Thus, the second
moment can be presented as

M2 = n2 + n′2 + xnn′ (21)

Calculating the left-hand expression from the definition for particular n, n′ values,
e.g., M2(1, 1) = 6, we derive the equation with one unknown. Solving this equation,
we get x = 4. This simple method can be used to find the higher order moments:

M3 = n3 + n′3 + 9
(

n2n′ + nn′2) − 6nn′, (22)

M4 = n4 + n′4 + 16
(

n3n′ + nn′3) + 36n2n′2 − 30
(

n2n′ + nn′2) + 20nn′ (23)
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Of particular interest are the numerical coefficients for the terms of the nmn′m′
type

with m + m′ = k, because these make the predominant contribution to Mk(n, n′) at
large quantum numbers. It is worth noting that these coefficients coincide with the
similar ones for the Mk( j, j ′) moments found for the rigid rotor. Since the transition
probabilities for the harmonic oscillator exhibit the property of factorization, it is only
natural to derive expression for Mk(n, n′) in the form of Eq. (14). Thus, we get

Mk(n, n′) ≈ 1

π

π∫

0

(
n + n′ − 2

√
nn′ cos α

)k
dα (24)

This integral is evaluated quite readily and the result is represented by the finite sum

1

π

π∫

0

(
n + n′ − 2

√
nn′ cos α

)k
dα =

k∑

m=0

(
k
m

)2

nk−mn′m (25)

The approximate moments in Eq. (24) (or Eq. (25)) coincide with those of (19) for
k = 0, 1, 2 at all values of n, n′. Obviously, at k ≥ 3 the terms are neglected whose
sum �Mk(n, n′) makes a minor contribution to Mk(n, n′) at large quantum numbers.
In other words, we see that their ratio tends to zero at large n, n′. Thus, Eq. (24) is
valid asymptotically at large quantum numbers.

Let Pn→0 = P0(n) be the known function of the initial quantum number. Hence,

P(n, n′) = 1

π

π∫

0

P0

(
n + n′ − 2

√
nn′ cos α

)
dα (26)

The vibrational factorization formula (26) shows a remarkable similarity (and differ-
ence) in comparison with the rotational factorization formula (13). If we remember
that the harmonic oscillator with frequency ω has the nth eigenstate energy h̄ωn (with-
out zero-point energy), the similarity becomes obvious. The difference results from
the 2 j + 1-fold degeneracy of energy levels of the linear rigid rotor.

As an example, we consider the case where the basis transition probability decreases
exponentially with the energy transferred

Pn→0 = (
1 − e−a)

e−an (27)

An elementary evaluation of integral in (26) results in

P(n, n′) = ae−a(n+n′) I0

(
2a

√
nn′

)
(28)

The P(n, n′) function is normalized to unity, when the summation over n′ is substi-
tuted by the integration for dn′. The transition probabilities, calculated from Eqs. (17)
and (28), are compared in Fig. 2. The value a = 0.2 is typical for the high temperature
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Fig. 2 Calculated Pn→n+�n for the forced harmonic oscillator from Eq. (28) compared with the exact
values from Eq. (17). The initial quantum number is n = 9

limit where valid is the approximation of the harmonic oscillator perturbed by external
force.

4 The forced Morse oscillator

The algebraic treatment of vibrational excitation of the forced Morse oscillator, intro-
duced in [16] in terms of a dynamical algebra, SU (2), leads to the factorization formula
for the probability of transitions between the bound states 0 ≤ n, n′ ≤ N (there are
N + 1 bound states) [6]:

Pn→n′ =
u(n,n′)∑

n′′=|n−n′|
C (N )

nn′n′′ Pn′′→0, (29)

where u(n, n′) = min(n +n′, 2N −n −n′). The number N is equal to (1−xe)/2xe(xe

is the anharmonicity constant) because, by definition, the energy EN = 0 near the
dissociation limit [17]. The expansion coefficients are given by

C (N )

nn′n′′ = (−1)s
∑

k

(
n
k − n′

)(
n′
k − n′′

) (
n′′
k − n

)
(N − n)!(N − n′)!(N − n′′)!

N !(N − k)!(N − s + k)!
(30)

It is obvious that all previous results for the harmonic oscillator are obtained in the
limit of vanishing anharmonicity (N → ∞).

As before, we calculate the moments
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Mk(n, n′; N ) =
u(n,n′)∑

n′′=|n−n′|
C (N )

nn′n′′n′′k (31)

In [6] it is shown that M0 = 1. We will seek for the first moment as n + n′ + xnn′.
From the symmetry property [6]

C (N )

nn′n′′ = C (N )

N−nN−n′n′′ (32)

it follows that all the moments tend to zero at n = n′ = 0 or N . Immediately we have

M1(n, n′; N ) = n + n′ − 2nn′

N
(33)

The second moment is of the form

M2(n, n′; N ) = M2(n, n′) + �M2(n, n′; N ), (34)

where �M2(0, 0; N ) = 0 and �M2(N , N ; N ) = −6N 2. Since contribution to �M2
is made by the terms nn′, n2n′ + nn′2 and n2n′2, correction will be of the form

�M2(n, n′; N ) = −6nn′ [1 + y(N − n)(N − n′)
]

(35)

From the definition, at n = n′ = 1 we readily obtain

M2(1, 1; N ) = 6 − 6

N
(36)

Comparing Eqs. (34) and (36), we find y = −1/N (N − 1). As a result, the second
moment takes a simple form

M2(n, n′; N ) = (n − n′)2 + 6nn′(N − n)(N − n′)
N (N − 1)

(37)

Using the first two moments, the other moments are evaluated according to Eq. (14)

Mk(n, n′; N ) ≈ 1

π

π∫

0

[
n + n′ − 2nn′

N
− 2

√
nn′ A(n, n′; N ) cos α

]k

dα, (38)

where

A(n, n′; N ) = 1

N

[
(N + 2)(N − n)(N − n′)

N − 1

] 1
2

(39)

The approximate equality (38) is precise at k = 0, 1, 2. For other k it is valid asymp-
totically. With n = 0, N (orn′ = 0, N ) this equality turns into identity.
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Finally, for the transition probability we get

P(n, n′) = 1

π

π∫

0

P0

[
n + n′ − 2nn′

N
− 2

√
nn′ A(n, n′; N ) cos α

]
dα (40)

For comparison with the harmonic oscillator (at N → ∞), the basis probabilities are
given as

Pn→0 =
(
1 − e−a

)
e−an

1 − e−(N+1)a
(41)

Thereafter, Eq. (40) provides a semiclassical approximation of the desired P(n, n′)
function:

P(n, n′) = 1 − e−a

1 − e−(N+1)a
exp

[
−a

(
n + n′ − 2nn′

N

)]
I0

[
2a

√
nn′ A(n, n′; N )

]

(42)

Strictly speaking, this function cannot be normalized to unity in both of the cases
where n′ is considered as either the discrete or continuous variable. Normalization
can be performed only for a great number of bound states (N 
 1), when we can
approximately assume that in Eq. (39), (N + 2)/(N − 1) ≈ 1, and thus change the
normalization constant:

Pc(n, n′) = a

1 − e−Na
exp

[
−a

(
n + n′ − 2nn′

N

)]
I0

(
2a

N

√
nn′(N − n)(N − n′)

)

(43)

Approximations are compared in Figs. 3 and 4. When N 
 1, at small a values the
difference is not large although Eq. (42) is preferable. With the a values of order of
unity, the difference vanishes for transitions with a large change in quantum numbers.
However, at small �n the better accuracy is provided again by Eq. (42) (Fig. 3). If the
number of bound states is comparatively small, the approximation, made by deriving
Eq. (43), fails and Eq. (42) provides the better accuracy than (43) for all the cases (see,
Fig. 4).

5 Discussion

Thus, we have derived the uniform semiclassical approximation of transition proba-
bilities using factorization formulas. The basic approximation, made by deducing the
desired formulas, is the approximate expression for the moments of Eq. (14). In the
case of the linear rigid rotor, a corresponding expression was found in the limit of large
quantum numbers using plausible reasoning [14]. However, our arguments, obtained
by deducing Eqs. (24) and (38), seem rather indefinable. First, note that the moments,
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Fig. 3 Comparison of state-to-state probabilities Pn→n+�n for the forced Morse oscillator calculated
from Eqs. (29), (42), and (43). The initial state is n = 9. The number of bound states is N = 18
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Fig. 4 The same as Fig. 3, but n = 4 and N = 8

Mk(n, n′), are approximated by the integral formula with two functions independent of
k. Two equations (at k = 1, 2) with two unknowns can be used to find these functions
(see, Eq. (14)). All other moments (with k ≥ 3) are expressed asymptotically in terms
of the first moments M1(n, n′) and M2(n, n′), whose dependence on the variables
n, n′ is known precisely. Physically, two parameters are quite sufficient for describing
the symmetric distribution, P(n, n′). Mathematically, conclusion is considered satis-
factory when the approximate expressions in the limit of large quantum numbers are
derived directly from definition. Unfortunately, we have failed to present a satisfactory
consideration of the problem. Therefore, we restrict ourselves to the inexact reasoning
and just ascertained that the factorization of transition probabilities may be used to
write down the uniform semiclassical approximation of P(n, n′) as
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P(n, n′) = 1

π

π∫

0

P0

(
M1 −

√
2

(
M2 − M2

1

)
cos α

)
dα (44)

This approximation makes it possible to find the analytical expressions for the transi-
tion probabilities if the basis vector is set by the simple analytical formula. Attempts
to improve approximation precision cast doubt on this possibility. Moreover, there
is no need for such improvements because the Pn→n′ probabilities can be computed
directly from definition without trouble.

We hope that other researchers will find this problem interesting and continue its
analysis.
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